
Phylogenetics

Quartet Fiduccia–Mattheyses revisited for larger
phylogenetic studies
Sharmin Akter Mim 1, Md. Zarif-Ul-Alam 1, Rezwana Reaz1, Md. Shamsuzzoha Bayzid 1,

Mohammad Saifur Rahman 1,*
1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh

*Corresponding author. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh.
E-mail: mrahman@cse.buet.ac.bd (M.S.R.)

Associate Editor: Russell Schwartz

Abstract
Motivation: With the recent breakthroughs in sequencing technology, phylogeny estimation at a larger scale has become a huge opportunity.
For accurate estimation of large-scale phylogeny, substantial endeavor is being devoted in introducing new algorithms or upgrading current
approaches. In this work, we endeavor to improve the Quartet Fiduccia and Mattheyses (QFM) algorithm to resolve phylogenetic trees of better
quality with better running time. QFM was already being appreciated by researchers for its good tree quality, but fell short in larger phylogenomic
studies due to its excessively slow running time.

Results: We have re-designed QFM so that it can amalgamate millions of quartets over thousands of taxa into a species tree with a great level
of accuracy within a short amount of time. Named “QFM Fast and Improved (QFM-FI)”, our version is 20 000� faster than the previous version
and 400� faster than the widely used variant of QFM implemented in PAUP* on larger datasets. We have also provided a theoretical analysis of
the running time and memory requirements of QFM-FI. We have conducted a comparative study of QFM-FI with other state-of-the-art phylogeny
reconstruction methods, such as QFM, QMC, wQMC, wQFM, and ASTRAL, on simulated as well as real biological datasets. Our results show
that QFM-FI improves on the running time and tree quality of QFM and produces trees that are comparable with state-of-the-art methods.

Availability and implementation: QFM-FI is open source and available at https://github.com/sharmin-mim/qfm_java.

1 Introduction

The notion of evolution is central to biology, with significant
applications in a range of domains, such as molecular biology,
virology, ecology, physiology, cancer genomics, and epidemi-
ology (Linder and Warnow 2005, Shi and Wang 2011, Liu
et al. 2013, Schwartz and Schäffer 2017, MacLean et al.
2020). Because of genomic variability induced by events like
Incomplete Lineage Sorting (ILS), Gene Duplication and Loss,
Horizontal Gene Transfer, and hybridization events, recon-
struction of species phylogeny (evolutionary linkages among
species) from genes sampled throughout the genome becomes
incredibly difficult (Maddison 1997).

Standard approaches for estimating species trees, such as
concatenation, can be statistically inconsistent in the presence
of gene tree heterogeneity (Roch and Steel 2015). Therefore,
“summary methods” are becoming increasingly popular due
to their high accuracy and statistical guarantee under ILS
(Bayzid and Warnow 2013).

Quartet-based summary methods have gained substantial
interest as quartets (4-leaf unrooted gene trees) do not contain
the “anomaly zone” (Degnan and Rosenberg 2006, 2009,
Degnan 2013), a condition where the most probable gene tree
topology may not be identical to the species tree topology.
ASTRAL (Mirarab et al. 2014b, Mirarab and Warnow 2015,

Zhang et al. 2018), one of the most accurate and widely used
species tree estimation methods, relies on dividing gene trees
into quartets, a feature that allows it to address ILS and may
contribute to its high accuracy. A recent method called
ASTRAL-Pro (Zhang et al. 2020) aims to calculate a single-
copy tree (the species tree) to maximize the overall similarity
to the input gene trees by applying dynamic programing.
ASTRAL-Pro 2 (Zhang and Mirarab 2022) adopts a
placement-based optimization algorithm for significantly bet-
ter scalability without sacrificing accuracy.

Another class of quartet-based methods is “quartet amal-
gamation techniques.” The broader impact and notable ad-
vantage of quartet amalgamation techniques over ASTRAL is
that they can be used outside the context of gene tree estima-
tion. A recent study, QT-GILD (Mahbub et al. 2022), showed
that quartet distribution inferred from incomplete gene trees
can be imputed (using techniques from machine learning),
and amalgamating the imputed quartets may result in sub-
stantially higher accuracy in species tree estimation compared
to ASTRAL in the presence of missing data.

Using semidefinite programing, Quartet Max-Cut (QMC)
seeks to obtain a phylogenetic tree, which is congruent with
the highest number of input quartets (Snir and Rao 2012).
Quartets with the appropriate weighting can boost the perfor-
mance of quartet-based approaches significantly (Ranwez and
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Gascuel 2001, Holland et al. 2013). QMC is extended in or-
der to support weighted quartet trees, which is termed as
wQMC (Avni et al. 2015).

Reaz et al. (2014) proposed a new quartet-based method,
Quartet Fiduccia–Mattheyses (QFM), and showed that QFM
outperforms QMC in terms of tree quality. QFM is being
widely used in important phylogenetic studies (Mason et al.
2016, Moumi et al. 2019, Zhou et al. 2022), especially along
with SVDquartets method (Chifman and Kubatko 2014).
Rahman (2018) conducted an experiment where QFM was
compared against ASTRAL and showed that Disk-covering
Method (Roshan et al. 2004) boosted QFM outperforms
ASTRAL on the 37-taxa simulated dataset. But excessively
high running time of QFM prevented the author to conduct
the experiment on larger datasets. A variant of QFM is imple-
mented in PAUP* (Swofford 2003) (referred as “QFM-
PAUP” subsequently in this article) to construct phylogenetic
tree by amalgamating unweighted quartets generated from
SVDQuartets method (Chifman and Kubatko 2014). While
this variant is faster, our experiments suggest that it is still not
suitable for large-scale phylogeny estimation. Very recently,
Mahbub et al. (2021) gave a weighted formulation of QFM
(wQFM), which can amalgamate weighted quartets. Even in
that study, the largest dataset they experimented with had
only 100 taxa.

Meanwhile, the demand for phylogeny estimation methods
that can be quite accurate on ultra-large datasets is increasing
as more sequence datasets become obtainable because of the
advancement of next-generation sequencing technologies.
NJMerge, a method for inferring phylogeny in a massive
scale, does not ensure that it will output a species tree as it
becomes collapsed in some cases at the time of searching and
establishing legal sibling-hood (Molloy and Warnow 2018,
2019). Le et al. (2021) explored different variants of
constrained-INC (Zhang et al. 2019) and found unsatisfac-
tory gene tree accuracy and optimistic species tree quality
when compared to conventional phylogenetic tree building
approaches, despite the fact that just one model condition in
their experiment included more than 1000 sequences. Han
and Molloy (2023) have recently developed TREE-QMC,
which is based on wQMC and offers a fast method for con-
structing the quartet graph directly from input gene trees
without the need for explicitly computing the weighted quar-
tet distributions as in the case of wQMC and wQFM.

The contributions of this article are summarized as follows:

• We have modified the QFM algorithm to make it scale
better with increased number of taxa and quartets. We
have significantly improved the running time complexity
of the algorithm through the use of suitable data
structures.

• We have also made modifications to QFM algorithm that
resulted in improvement in the tree quality.

• We have demonstrated the performance of the modified
QFM algorithm through an extensive experimental study.
Our experimental design includes several simulated as
well as biological datasets in which QFM of Reaz et al.
(2014) does not scale to.

The rest of the article is organized as follows. In Section 2,
we briefly describe datasets and explain the improvements
made to the QFM algorithm, followed by its complexity
analysis. In Section 3, we describe the extensive experimental

studies we have conducted and showcase the results. This is
followed by a brief discussion subsection. Finally, Section 4
concludes the article.

2 Materials and methods
2.1 Datasets
2.1.1 Simulated datasets

• Simulated dataset-1. Following the approach in Snir and
Rao (2012), Reaz et al. (2014), and Avni et al. (2015), we
have generated model species trees for varied number of
taxa (species), denoted as n, using the r8s software
(Sanderson 2003). Specifically, we have used n 2
f25;50;100; 200;300; 400; 500; 800;1000;2000;3000g.
Then a set of noisy and noiseless model conditions have
been formulated by varying the consistency level (c) pa-
rameter. Here, c indicates the percentage of quartets that
agree with the model species tree topology. We have used
c 2 f70%;80%; 90%;95%, 100%g. The total number of
quartets (m) in a dataset has been determined by another
parameter k, such that m ¼ nk. We have used k 2
f1:5;2; 2:8g for n � 800. For larger values of n, we have
used k 2 f1:5;2g. Two sets of quartets (one weighted and
another one unweighted) have been extracted from each
model species tree for the different combinations of c and
k by utilizing the software developed and employed in
(Avni et al. 2015) Thus, this dataset consists of 150 differ-
ent model conditions and among them 120 model condi-
tions are noisy (i.e. c < 100%) and 30 model conditions
are noiseless (i.e. c ¼ 100%).

Additionally, we have used two other settings of ðn;kÞ ¼
ð1000; 2:8Þ (Fig. 1c) and ðn; kÞ ¼ ð2000; 2:6Þ (Fig. 1d) for
the different consistency levels.
• SATe dataset. To compare our method with the QFM-

PAUP, we have utilized the simulated nucleotide dataset
used in Liu et al. (2009) as multiple sequence alignment
(MSA) is required as input of SVDquartets method in
PAUP*. We have used 22 out of 37 model conditions
where number of taxa is either 100 or 500 and gap length
is long, medium or short.

• 37-taxon simulated dataset. This dataset, studied in Song
et al. (2012), contains gene trees representing various
model conditions with varied number of genes from 25 to
800, sequence length from 250 bp to its true length and
ILS level as low (2�), moderate (1�), and high (0.5�).

• 100-taxon simulated dataset. This dataset was experi-
mented with in Mirarab and Warnow (2015). In each rep-
licate there are 1000 true gene trees and number of taxa is
100 (plus 1 outgroup taxa).

We have used 20 replicates for each model conditions of all
the simulated datasets except the 100-taxon simulated dataset
where only 10 replicates are used.

2.1.2 Biological datasets

• Plant dataset. This dataset, taken from Wickett et al.
(2014), includes 852 nuclear genes and 1 701 170 aligned
sites from 103 taxa. There are 424 gene trees, generated
from first and second codon position alignments after dis-
carding genes with <50% taxon occupancy and gene
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fragments lacking more than 66% of their sites.
Concatenated alignment of first and second codon posi-
tions, after exclusion of gene alignments with <50%
taxon occupancy and gene fragments with <66% of their
sites, was also available in this dataset.

• Amniota dataset. The amniota dataset (amino acid gene
trees) is taken from Chiari et al. (2012), which consists
248 genes from 16 amniota taxa.

• Avian dataset. The avian dataset, which comprises 14 446
loci across 48 taxa, is taken from Jarvis et al. (2014).

• Angiosperm dataset. This dataset included 310 gene sam-
ples from 42 angiosperms and four outgroups, which is
taken from Xi et al. (2014).

Quartets have been generated from the gene trees in 37-taxon
simulated dataset, 100-taxon simulated dataset, and all bio-
logical datasets using the method described in Brodal et al.
(2013). For the weighted setting (for wQMC and wQFM),
the frequency of the quartets has been used as their respective
weights.

2.2 QFM improvements

The QFM algorithm and the sub-routines it invokes are given
in Supplementary Algorithms S1–S3 and Algorithm 1. We
have not only significantly improved the running time com-
plexity of QFM, but also improved the quality of the tree pro-
duced. When applying the modifications to the algorithm, we
at first implemented a version which is much faster than

QFM, but produces identical trees. We call this version
“QFM Fast” or “QFM-F” in short. Subsequently, we
tweaked the algorithm further so as to improve the tree qual-
ity as well. This version is referred to as “QFM Fast and
Improved” or “QFM-FI” in short.

In our modified versions of QFM (QFM-F and QFM-FI),
we have taken advantage of several efficient data structures as
well as clever bookkeeping of certain information, which was
not done in (Reaz et al. 2014). Let, n and m be the cardinality
of taxa set P and quartet set Q, respectively. Now, we will go
over the details of fast implementation of QFM algorithm.

• Frequency counting. At the time of storing the input quar-
tets, we need to identify the quartets, which has same to-
pology and count the occurrences of the same topological
structure. This count is known as frequency of a quartet.
We have applied hashing to make this identification and
counting process much faster. While QFM, as described in
Reaz et al. (2014) takes Oðm2Þ time for frequency count-
ing of all quartets, our modified version only requires
OðmÞ time. During this phase, the set of all distinct taxa is
also extracted from the set of quartets. For each taxa, we
maintain several pieces of information, such as, the parti-
tion the taxa belongs to, the quartets that have this taxa as
a leaf node etc. These data are stored in another hash ta-
ble, indexed by the taxon identifier.

• Initial bi-partitioning. Initial bi-partitioning consists of
sorting Q in descending order of quartet frequency which

(a) (b)

(c) (d)

Figure 1. Box plot of nRF distance of trees produced by QMC, wQMC, QFM-F, and QFM-FI for various quartet consistency levels and number of taxa (n).

For n¼ 500, 800, and 1000, k has been set to 2.8. For n¼ 2000, we have used k¼ 2.6. (a) n ¼ 500; k ¼ 2:8; (b) n ¼ 800; k ¼ 2:8; (c) n ¼ 1000; k ¼ 2:8; (d)
n ¼ 2000; k ¼ 2:6.
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requires OðmlogmÞ time and bi-partitioning P into left
partition (Pl) and right partition (Pr), by examining each
quartet in descending order of frequency and distributing
its taxa in the two partitions following the rules described
in Supplementary Algorithm S3. Since hashing is used to
store the set of taxa, the checking and insertion of taxa of
each quartet into a partition take Oð1Þ time. So, the requi-
site time for m quartets is OðmÞ. As a result, the worst
case time complexity of initial bi-partitioning becomes
OðmlogmÞ þ OðmÞ � OðmlogmÞ whereas in Reaz et al.
(2014), it was Oðm2Þ þ OðmnÞ � Oðm2Þ.

• MFM bi-partitioning. In this step, the initial partition is
perturbed to produce a modified partitioning with an

improved partition score (see Algorithm 1). The major
parts of the algorithm are as follows.

Quartet status checking (Lines 4–10). For each q 2 Q, it is
checked whether the quartet is satisfied, violated or deferred
with respect to the initial partition and the corresponding
numbers are updated. A quartet ðða;bÞ; ðc; dÞÞ is satisfied with
respect to Pl, Pr, if taxa a and b are in PlðPrÞ and c and d are
in PrðPlÞ. The quartet is violated if a and c are in one partition
while b and d are in another. Alternately, it can be violated if
a and d are in one partition and b and c are in another. A
quartet is called deferred if at least three taxa are in same par-
tition. The quartet status is further checked by simulating
switching of partition for each of its four taxa separately. As
the hash table of taxa set contains the information on which
partition a taxa is in, the aforementioned status check takes
Oð1Þ time for one quartet. The required time for m quartets is
thus OðmÞ.

Initial partitioning score (Line 11). Initial partitioning score
is calculated by subtracting initial violated score from initial
satisfied score. This part needs Oð1Þ time.

Locking a free taxa (Lines 13–25). We first measure the
gain of each free taxa (i.e. increase in partition score if the
taxon would be moved to its opposite partition), then taxon
with the maximum gain is selected and locked. Since status
checking is already done in previous step, it needs only Oð1Þ
time to measure gain for each taxon and OðnÞ for all n taxa.
So, here the required time is �OðnÞ.

Locking all free taxa. Since initially there are n free taxa, to-
tal required time for locking all free taxa is Oðn2Þ. When a
free taxon is locked, it is also moved to its opposite partition.
So, status of all the quartets which contain this taxon (i.e. the
relevant quartets) may also be changed. A quartet is a relevant
quartet for all of its four taxa. So during the course of locking
all free taxa, each quartet’s status gets checked four times, in-
curring OðmÞ time in total. As a result, locking all n taxa
needs total Oðn2Þ þ OðmÞ time.

Calculation of maximum cumulative gain (Line 27). It is
done through a linear pass over the “log table,” thus requir-
ing OðnÞ time.

Thus running time for one iteration of the outer loop of this

routine (Lnes 2–33) isOðn2Þ þ OðmÞ þ OðnÞ � Oðmaxðn2;mÞÞ
whereas it was Oðn3mÞ in Reaz et al. (2014). Iteration continues
until the value of maximum cumulative gain becomes �0.
Therefore, the partition score after each iteration must increase
by at least 1. Since partition score is the difference between the
number of satisfied (s) and violated (v) quartets (see Reaz et al.
2014), it is an integer and its maximum value can be m.
Therefore, it follows that the outer loop iterates no more than m
times. Therefore, the running time of Algorithm 1 is

Oðmaxðmn2;m2ÞÞ. Letting k ¼ log nm, it becomes Oðmax

ðnkþ2; n2kÞÞ orOðnmaxð2k;kþ2ÞÞ.

• Short quartet puzzle. This step is same as in Snir et al.
(2008) and Snir and Rao (2010) except that we have
added a counting section, which counts the frequency of
left quartet set Ql and right quartet set Qr before the next
recursive call of MODIFIED_SQP function (see
Supplementary Algorithm S2). The function is recursively
called on both pairs (Ql, Pl) and (Qr, Pr). Recursion termi-
nates when there are only three taxa, at which point a

Algorithm 1 Function for MFM_Bipartition

1: Function MFM_BIPARTITION(Q;Pl ;Pr )

2: while True do

3: SET status of each taxon to FREE

4: for q 2 Q do

5: Check status of q with respect to Pl, Pr.

6: Calculate satisfied/violated/deferred score.

7: for each taxa t of q do

8: Check quartet status if t were to move to its oppo-

site partition.

9: end for

10: end for

11: Calculate initial partition score

12: while There is a free taxon do

13: for Each free taxon t in any partition do

14: Calculate GAIN as the increase in partition score if t

switches partitions

15: end for

16: tm  taxa with MAXIMUM GAIN

17: UPDATE (Pl, Pr) to reflect partition switching of tm

18: StatusðtmÞ  LOCKED

19: LOG IN A TABLE (tm, MAXIMUM GAIN)

20: for q 2 set of relevant quartets of tm do

21: for each free taxa in q do

22: SUBTRACT satisfied/violated/deferred score due to tm

23: ADD new satisfied/violated/deferred score due to

tm moving to its opposite partition

24: end for

25: end for

26: end while

27: c  index of LOG TABLE such that
Pc

1 Maximum Gain is

maximum. Call it MCGAIN

28: if MCGAIN > 0 then

29: UPDATE (Pl, Pr) by rolling back to the switching of taxa

that occurred in index c of LOG TABLE.

30: else

31: BREAK

32: end if

33: end while

34: return (Pl, Pr)

35: end Function
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depth one tree (i.e. a star of three taxa) is returned. After
trees are returned from both recursive calls, they are
merged using the dummy taxon [see Reaz et al. (2014) for
details]. The running time of one call of Modified_SQP
(without the recursive calls) is dictated by the time taken
by the MFM bi-partitioning step.

Reaz et al. (2014) showed that the running time for one it-
eration of the outer loop of their implementation of
MFM_Bipartition is Oðn3mÞ ¼ Oðnkþ3Þ. And they did not
provide an upper bound on the number of iterations. Based
on the upper bound, we have provided above, their time com-
plexity becomes, Oðnkþ3mÞ ¼ Oðn2kþ3Þ, while in our im-
proved version, it is Oðnmaxð2k;kþ2ÞÞ. We have thus
considerably improved the running time of MFM_Bipartition.

We also modified the algorithm to improve the tree quality.
When the violated quartets are modified with dummy taxon
(Lines 11 and 12 of Supplementary Algorithm S2), several
quartets may end up in the same topological structure. Let
ðða;bÞ; ðc;dÞÞ and ðða; bÞ; ðc; eÞÞ be two quartets in Q in a call
to MODIFIED_SQP. Let a, b and c belonged to one partition
and d and e in the other. In this scenario, c and d are called
“deserted taxon” of these two quartets, respectively. Then
both quartets will be modified so as to become ðða;bÞ; ðc; tdÞÞ
where td is the dummy taxon. In such case, we have main-
tained only one copy of the quartets with identical structure
and combined their frequencies. All the deferred quartets are
sorted again according to frequency in each divide step,
whereas sorting was done only in the first divide step in QFM
of Reaz et al. (2014). With this modification, we have seen
significant improvement in tree quality, as shown later in the
article.

2.3 Complexity analysis

As before, we denote the number of taxa by n, the number of
input quartets by m and we let k ¼ log nm. As discussed in
the previous section, one call of MODIFIED_SQP, without the
recursive calls, takes Oðnmaxð2k;kþ2ÞÞ time. Let the n taxa are
split into i and n–i taxa in left (Pl) and right (Pr) partitions, re-
spectively. The dummy taxon is added to both partitions. Let,
T(n) denotes the total running time of QFM-FI algorithm for
n taxa. Then

TðnÞ ¼ Tðiþ 1Þ þ Tðn� iþ 1Þ þ Oðnmaxð2k;kþ2ÞÞ
¼ Tðiþ 1Þ þ Tðn� iþ 1Þ þ cnmaxð2k;kþ2Þ : (1)

The worst case (TworstðnÞ) occurs when partitioning in each
recursive step is extremely skewed, i.e. one partition contains
three taxa and the other contains the rest. Letting
z ¼ maxð2k;kþ 2Þ,

TworstðnÞ ¼ Tð3Þ þ Tworstðn� 1Þ þ cnz

¼ Tð3Þ þ Tð3Þ þ Tworstðn� 2Þ þ cðn� 1Þz þ cnz

¼ ½Tð3Þ þ � � � þ Tð3Þ� þ Tworstðn� ðn� 3ÞÞ þ ½c4z

þc5z þ � � � þ cðn� 1Þz þ cnz�

¼ ðn� 2ÞTð3Þ þ c
Xn

i¼4

iz

� OðnÞ þ cnzþ1 ¼ Oðnzþ1Þ ¼ Oðnmaxð2k;kþ2Þþ1Þ
¼ Oðmaxðnm2;n3mÞÞ

:

We have also analyzed overall space complexity of QFM-
FI, which is Oðmþ nÞ (see Supplementary Material for
details).

3 Results and discussion
3.1 Comparison of tree quality on the basis of nRF

Comparison is performed in terms of normalized Robinson
Foulds Distance (nRF) (see Supplementary Material for the
definition of nRF).

3.1.1 Comparison among QMC, wQMC, QFM-F, and
QFM-FI

Using “simulated dataset-1,” we have conducted extensive
experiments to compare QMC, wQMC, QFM-F, and QFM-
FI, as demonstrated in Fig. 1 as well as Supplementary Tables
S1 and S2. Like QFM-F and QFM-FI, the QMC algorithm
takes unweighted quartets as input while wQMC expects
weighted quartets. As the dataset comprised both weighted
and unweighted quartet sets induced from the same model
species tree, we were able to use the unweighted quartets with
QFM-F, QFM-FI, and QMC, and weighted quartets with
wQMC. Another algorithm that works with weighted quar-
tets is wQFM, but it is excluded from this experiment because
wQFM expects a distinct set of weighted quartets while our
large simulated datasets contained repeated quartets, albeit
with different weights.

In most of the cases QFM-FI outperformed the other meth-
ods—among 120 noisy model conditions, QFM-FI was better
than all other methods in 70 cases, QMC was better in 20
cases, QFM in 10 cases, and wQMC in only four cases.
Among the 30 noiseless model conditions, QFM-FI was better
than other methods in four cases, QMC in two cases, QFM in
nine cases, and wQMC in seven cases. In five noiseless model
conditions, QMC, QFM-F, and QFM-FI were able to per-
fectly recover the tree (i.e. 0 nRF distance). A more detailed
analysis is provided in the Supplementary Material.

From Fig. 1 as well, it is clear that QFM-FI produces trees
of superior quality. As c increases, all the methods produce
better trees. The improvement from QFM-F to QFM-FI is
also clearly visible in these graphs. The nRF values in Fig. 1d
are higher compared to the other figures because k¼ 2.6 has
been used, instead of 2.8, due to memory constraints—as
fewer quartets are analyzed, tree quality has been adversely
affected.

From the above experiments, it is clear that QFM-FI produ-
ces superior quality trees compared to QFM-F (and QFM).
Therefore, in subsequent experiments, we have only run
QFM-FI and have not run the other two versions.

3.1.2 Comparison between QFM-FI and QFM-PAUP

To run QFM-PAUP, MSA is given as input to SVDQuartets
method in PAUP*, which generates unweighted quartets and
finally QFM is used to reconstruct the phylogenetic tree by
amalgamating these quartets. The comparison of nRF dis-
tance between QFM-FI and QFM-PAUP on 22 different
model conditions of the SATe dataset is shown in
Supplementary Table S3. QFM-FI performed better in 8
model conditions, while QFM-PAUP was better in 14
model conditions. But only in two model conditions (500L1
and 500M4), the results were statistically significant
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(Supplementary Table S9). While QFM-PAUP performed bet-
ter in both of these model conditions, it is noteworthy that
QFM-PAUP could not generate tree for some of the replicates
of some model conditions (500L1, 500L2, 500L3, 500M2,
500M3, and 500S1). As the details of QFM-PAUP implemen-
tation is not available (neither source code, nor any publica-
tion), we could not tell whether the failure is a systematic one
and for which type of input data might the algorithm fail con-
sistently. QFM-FI, on the other hand, was able to recover a
tree in all cases.

3.1.3 Comparison on 37-taxon simulated dataset

We have compared the performance of QFM-FI, QMC,
wQMC, wQFM, and ASTRAL on various model conditions
in 37-taxon dataset. As a whole, the accuracy of all of these
methods was relatively similar. On some model conditions,
QFM-FI outperformed ASTRAL, QMC, and wQMC, albeit
the differences were small. In one experiment, we varied the
number of genes from 25 to 800 using 500 bp sequence length
and kept the level of ILS at moderate. The nRF distance for
all the methods decreases as the number of gene increases (see
Fig. 2a), but QFM-FI outperforms other methods, and the dif-
ference between QFM-FI and the other methods, except for
wQFM, is statistically significant where number of genes is
200.

Then, we varied the sequence length from 250 bp to its true
length using 200 genes and moderate ILS level. All the meth-
ods performed well with the increase of the sequence length
but QFM-FI is better than other methods (see Fig. 2b). The
difference between QFM-FI with QMC, wQMC, and
ASTRAL is statistically significant where sequence lengths are
250 and 500 bp. The difference between QFM-FI with QMC
and wQMC is also statistically significant where sequence
length is 1500 bp.

We subsequently varied the ILS level from high (0.5�) to
low (2�) using 200 genes and 500 bp sequence length. In
Fig. 2c, 0.5�, 1�, and 2� means high, moderate, and low lev-
els of ILS, respectively. All the methods performed well as the
ILS level decreased. The difference between QFM-FI with
QMC, wQMC, and ASTRAL is statistically significant at
moderate ILS level. All the results of significance tests are pro-
vided in the Supplementary Material.

3.1.4 Comparison on 100-taxon simulated dataset

We have compared the tree quality of QFM-FI, wQMC,
wQFM, and ASTRAL for 1000 true gene trees over 10 repli-
cates (Supplementary Fig. S3). QMC aborted in this dataset.
For all the other methods, the nRF distance was very close to
0, with ASTRAL having the best performance, followed by
wQFM, wQMC, and QFM-FI, respectively.

3.2 Comparison of methods on biological dataset
3.2.1 Analyses on plant dataset

Using the 424 gene trees, we have generated weighted and
unweighted quartets. We have then fed the unweighted quar-
tets to QFM-FI (Fig. 3b) and QMC (Fig. 3c), and the weighted
ones to wQMC (Fig. 3c) to generate the respective species
trees. We have also constructed species tree using ASTRAL
(Fig. 3a). Notably, QFM of Reaz et al. (2014) aborted during
execution in this dataset.

All of these methods reconstructed all the major clades, i.e.
Eudicots, Chloranthales, Magnoliids, Monocots, ANA
Grade, Gymnosperms, Monilophytes, Lycophytes,
Hornworts, Liverworts, Mosses, Zygnematophyceae,
Coleochaetales, Charales, Klebsormidiales, Chlorokybales,
and Mesostigmatales although their internal orientation of
leaf nodes are little bit different from each other. QMC and
wQMC have generated identical trees. Internal resolution of
different clades is given below.

• Zygnematophyceae. Branching order of this clade, as re-
covered by QFM-FI, differs from that of ASTRAL and
QMC. But the order recovered by QFM-FI matches with
previous DNA sequence based study (Gontcharov 2008).

• Bryophytes. All the methods successfully recreated bryo-
phytes, a monophyletic group of non-vascular land plants
that includes Bryophyta (mosses), Anthocerotophyta
(hornworts), and Marchantiophyta (liverworts)
(Nishiyama et al. 2004, Goremykin and Hellwig 2005,
Wickett et al. 2014).

• Monilophyte and Lycophyte. The lycophytes and monilo-
phytes have been recovered as successive sister lineages by
all the methods, which is also well supported in literature
(Pryer et al. 2001, Wolf et al. 2005, Rai and Graham
2010, Grewe et al. 2013, Wickett et al. 2014).

• Gymnosperm. Gymnosperm clade is recovered and a sister
relationship between Gnetales (specified by Gnetum mon-
tanum) and Pinaceae (specified by Pinus taeda and Cedrus
libani) is reconstructed by all the methods. This recon-
struction is congruent with previously reported studies
(Burleigh and Mathews 2004, Zhong et al. 2010, 2011).
The orientation of leaf nodes for this clade in the trees esti-
mated by QMC and wQMC are different with that of the
other methods.

• Angiosperm (flowering plants). All the estimated trees
concluded that Amborella trichopoda is the sister species
to all other angiosperms. ANA grade, which includes
Amborellales (specified by A.trichopoda), Nymphaeales
(specified by Nuphar advena), and Austrobaileyales (speci-
fied by Kadsura heteroclite), is found to be the subsequent

(a) (b) (c)

Figure 2. Study on 37-taxon simulated dataset using QFM-FI, wQFM, wQMC, QMC, and ASTRAL by varying number of genes, sequence length, and ILS

level. (a) ILS level is moderate and sequence length is 500 bp. (b) ILS level is moderate and number of genes is 200. (c) Number of genes is 200 and

sequence length is 500 bp.
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(a)

(b)

(c)

Figure 3. Study of the plant dataset using (a) ASTRAL, (b) QFM-FI, (c) QMC and wQMC. Identical trees are generated by QMC and wQMC. Here, 424

gene trees are used as input. The yellow to blue color scheme, as rendered by Phylo.io (Robinson et al. 2016), indicates the similarity of best matching

subtrees, with reference to the ASTRAL tree.
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sister lineages of rest of the angiosperms. This finding is in
accordance with most prior studies and current phyloge-
nomic assessments of nuclear genes (Jansen et al. 2007,
Moore et al. 2007, Qiu et al. 2010, Soltis et al. 2011,
1999). In Monocots clade, we have gotten different orien-
tation of leaf nodes for ASTRAL and QFM-FI. But the
relationships among magnoliid, monocot, and eudicot
clades, as resolved by all the methods, are mostly compa-
rable with existing studies (Moore et al. 2010, Soltis et al.
2011, Wickett et al. 2014).

We also generated unweighted quartets from concatenated
alignments of 424 genes using SVDquartets method of
PAUP*, which were then amalgamated using QFM-FI, QMC
and QFM-PAUP (Supplementary Fig. S4). Each of the result-
ing species trees failed to recover ANA Grade. They recon-
structed magnoliids but misplaced Sarcandra glabra and
K.heteroclita inside magnoliids clade. QMC could not recon-
struct monocots clade. Rest of the clades were recovered al-
though their branching order is very different. Overall, for all
the methods, quartets decomposed from gene trees resulted in
better analysis compared to quartets obtained by
SVDquartets from concatenated alignments.

3.2.2 Analyses on avian dataset

The trees estimated by QFM-FI, wQMC, and ASTRAL in the
avian dataset are shown in Fig. 4. These trees have been com-
pared against the tree estimated by MP-EST that was pre-
sented as reference tree in other analyses (Jarvis et al. 2014,
Mirarab et al. 2014a). Notably, even with 64 GB RAM, both
QFM of Reaz et al. (2014) as well as QMC aborted during
execution in this dataset, which contained �2:5 billion
quartets.

• Telluraves. Australaves and Afroaves construct the “core
landbirds” or the Telluraves clade (Braun et al. 2019).
The estimated trees of QFM-FI and ASTRAL recovered
Australaves and Afroaves clades to successfully recon-
struct Telluraves, albeit with different internal resolution.
On the other hand, the estimated tree of wQMC could not
cluster Red-legged seriema with other Australaves, thus
failing to resolve Australaves clade correctly. Though
wQMC could not resolve Australaves and Afroves clades
fully, it nevertheless clustered them together. wQFM also
recreated all of these relationships, as shown in Mahbub
et al. (2021).

• Acquornithia. Pelecanimorphae, Procellariimorphae, and
Gavilmorphae clades construct the “core waterbird” or the
Acquornithia clade (Jarvis et al. 2014). wQFM (Mahbub
et al. 2021), ASTRAL, and wQMC resolved all of these
small groups as well as the Acquornithia clade. QFM-FI
could reconstruct Pelecanimorphae, Procellariimorphae, and
Gavilmorphae clades separately but could not resolve the
Acquornithia as it put Gavilmorphae (Red-throated loon) in
a different clade.

• Phaethontimorphae. This clade comprises sunbittern and
topicbird (Jarvis et al. 2014). wQFM (Mahbub et al. 2021),
ASTRAL, wQMC, and QFM-FI resolved this clade.

• Otidimorphae. This group consists of Red-crested turaco,
MacQueen’s bustard, and common cuckoo (Mahbub
et al. 2021). wQMC recovered this clade but other meth-
ods failed to resolve it. This clade was also recovered by
wQFM in the analysis performed in Mahbub et al. (2021).

• Caprimulgimorphae (Strisores). The chuck-will’s-widow
(nightjar), swift, and hummingbird form this clade (Braun
et al. 2019).This clade was recovered by ASTRAL and
wQMC. In the study done in Mahbub et al. (2021),
wQFM also inferred this clade. These species were clus-
tered together into a clade by QFM-FI, albeit it also in-
cluded hoatzin [the extant species of Opisthocomiformes
(Braun et al. 2019)] in the same clade. The position of
Opisthocomiformes has been highly debated in several
assessments (Mayr 2022) and according to several molec-
ular investigations (Hackett et al. 2008, Prum et al. 2015,
Kuhl et al. 2021), Opisthocomiformes were found to be
near to the Strisores.

• Columbea. All of these methods have retrieved
Columbimorphae (mesite, sandgrouse, and pigeon) and
Phoenicopterimorphae (flamingo and grebe) (Jarvis et al.
2014). But none of these methods position them as sister
clades and therefore, failed to recover Columbea (fla-
mingo, grebe, pigeon, mesite, and sandgrouse) clade.
Although wQFM recovers Columbimorphae and
Phoenicopterimorphae, it too is unable to restore
Columbea (Mahbub et al. 2021).

• Cursores. The estimated tree of QFM-FI reconstructed
Cursores (grey crowned crane and killdeer) whereas all
the other methods in our study, as well as wQFM
(Mahbub et al. 2021) failed to resolve this sub-group.

There is plenty of proof that estimates of avian phylogeny
based on large-scale datasets may be impacted by well-known
artifacts (such as long-branch attraction, heterotactic varia-
tion, and discordance between gene trees) as well as subtle
“data-type effects” that reflect poor fit to empirical data for
available models of sequence evolution. The estimations of
phylogeny vary depending on whether exons, introns, non-
coding ultraconserved elements, conserved non-exonic ele-
ments, or TE insertions were employed for analysis (Braun
et al. 2019). In our analysis, however, we have used the same
type of data as input for different quartet-based methods and
obtained different trees. This is likely due to the methodologi-
cal differences of the various quartet-based methods. Even
when employing the same collection of gene trees, different
approaches may operate under different presumptions and
have varying sensitivity to the phylogenetic signal present in
the data, thus resolving the complicated relationships at the
base of Neoaves more or less effectively.

The analyses on Amniota and Angiosperm datasets are pro-
vided in the Supplementary Material.

3.3 Running time comparison

We have compared the running time of different variants of
QFM with QMC, wQMC, and ASTRAL. In several datasets,
we originally had gene trees which needed to be pre-processed
to generate quartets to be consumed by QFM, QMC, and
wQMC. We note that this pre-processing time is not included
in the running time comparisons.

3.3.1 Running time comparison of QFM and QFM-F

For running time analysis, we varied n and k while keeping c
fixed at 70%. We have used k 2 f1:5;2;2:8g. For model con-
ditions where k is set to either 1.5 or 2, we have varied n from
25 to 500. Since QFM does not scale to large datasets, we
have varied number of taxa from 25 to 100 for the model
conditions, where k is set to 2.8. We have taken the average
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(c) (d)

Figure 4. Study of the Avian dataset using QFM-FI, ASTRAL, and wQMC. The yellow to blue color scheme, as rendered by Phylo.io, indicates the

similarity of best matching subtrees, with reference to the MP-EST tree. (a) MP-EST (Jarvis et al. 2014, Mirarab et al. 2014a), (b) QFM-FI, (c) ASTRAL, (d)

wQMC.
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running time of 20 replicates for each model condition.
Figure 5 shows the running time comparison of QFM and
QFM-F where it is very clear that QFM does not scale to large
datasets. But we have been able to significantly improve its
performance, as observed from the QFM-F curves, thus en-
abling it to be used in larger phylogenetic studies.

3.3.2 Running time comparison of QFM-F, QFM-FI, QMC,
and wQMC

The running time curves are shown in Supplementary Fig. S5.
The running time of QFM-F and QFM-FI are very similar.
Thus, we were able to achieve tree quality improvement with
a little sacrifice of the running time improvements that we in-
corporated into QFM. For example, the largest difference in
running time between QFM-F and QFM-FI was <25 min
when number of taxa was as high as 2000, with 382 540 999
quartets (k¼ 2.6) and c was 70%.

The running time of QFM-F and QFM-FI is better than
that of QMC and wQMC when the quartet count is quadratic
in the number of taxa. But running time of QFM-F and
QFM-FI becomes higher than that of QMC and wQMC
when k is 2.8. It can also be observed that the running time of
all the methods increase while number of taxa, quartet or con-
sistency level increases. Nevertheless, the running time of all
the methods stay reasonable for quite large datasets.

3.3.3 Running time comparison of QFM-F, QFM-FI, and
QFM-PAUP

We have compared the running time of QFM-F, QFM-FI, and
QFM-PAUP on different model conditions from the SATe
dataset. QFM-PAUP is significantly faster than QFM imple-
mentation of Reaz et al. (2014). In fact, it is faster than QFM-
F and QFM-FI when the number of taxa is 100. But when
500 taxa datasets were used, QFM-F and QFM-FI signifi-
cantly outperformed QFM-PAUP in terms of running time.
This is shown in Supplementary Fig. S6. Interestingly, in all of
these experiments, QFM-FI demonstrated faster running time
than QFM-F.

3.3.4 Running time comparison on 37-taxon simulated
dataset

The running time comparisons among QFM-FI, QMC,
wQMC, and ASTRAL for varying number of genes, ILS, and
gene lengths are shown in Supplementary Fig. S7. Since it is a
small dataset, the running time for all the method is very low.
In these model conditions, QFM was slower than the other
methods, albeit the largest running time for QFM was 156 s
only. For the input of wQMC, the quartets were pre-
processed to produce a distinct set of quartets with their fre-
quency (number of appearances of same topology) as weight.
This significantly reduced the input size, which led to the very
small running time for wQMC.

As the number of genes increased, the running time of
ASTRAL, QMC, and QFM-FI increased as well which is
expected because number of quartets also increases with the
increase of number of genes. As the level of ILS dropped, so
did the running times of ASTRAL and QFM-FI, which was
also expected but the running time of QMC remained fairly
unchanged. On the other hand, as the sequence length in-
creased, the running time of ASTRAL and QFM-FI decreased,
while that of QMC remained relatively unchanged. For true
sequence length, the running time of QFM-FI increased a little
bit. As the number of genes is 500 in the last two experiments
(decreasing ILS level and increasing sequence length), the
number of generated quartets is nearly equal. As a result, the
running time of QMC has remained relatively constant.

3.3.5 Running time comparison on 100-taxon simulated
dataset

Although tree quality of ASTRAL (Supplementary Fig. S3)
was good in this experiment, running time is quite high com-
pared to other methods (Supplementary Fig. S8). The running
time of QMC and wQMC was better in this dataset than
ASTRAL and QFM-FI.

3.4 Discussion

In this work, we have made several changes to the QFM algo-
rithm so as to significantly improve its running time as well as
the quality of estimated trees. Named as QFM-FI, our method
has been analyzed theoretically and we have been able to pro-
vide bounds on the time and space complexity of our algo-
rithm. We have improved the running time of the MFM bi-
partitioning phase by a factor of Oðn3Þ. The overall time and
space complexity of QFM-FI has been shown to be
Oðmaxðnm2;n3mÞÞ and Oðmþ nÞ, respectively.

We have carried out a thorough comparison of QFM-FI
with existing state-of-the-art supertree methods on simulated
and biological datasets, which cover a wide range of model
conditions. We have observed a significant improvement in
generated tree quality as well as in speed. QFM-FI outper-
formed all other approaches in 70 cases out of 120 noisy
model conditions and 4 cases out of 30 noiseless model condi-
tions of simulated dataset-1. The running time of QFM-FI is
better than QMC and wQMC when k is 1.5 or 2. On 37-
taxon simulated dataset, out of 12 model conditions, QFM
outperformed ASTRAL in two cases, QMC in three cases,
and wQMC in three cases with statistical significance. When
we have averaged the nRF distance over 20 replicates for each
of these 12 model conditions, it is observed that QFM outper-
formed ASTRAL, QMC, and wQMC on all of these 12 model
conditions although only some of the differences of these
averages between QFM-FI and other methods are statistically
significant. We have also noted that running time of QFM-FI
is a little bit slow in comparison with ASTRAL, QMC, and
wQMC although the largest running time is <3 min. Also, we
observed that when there is numerous amount of redundant
quartet trees in input, QFM-FI is more memory efficient than
QMC–QMC aborted on the whole quartet set of 100-taxon
simulated dataset (see Supplementary Material for the details
of memory comparison).

In biological datasets, we have observed that the estimated
tree of QFM-FI is quite comparable and consistent with the
biological beliefs. QFM-FI is more congruent with the biologi-
cal notions than the other methods on avian dataset. The vari-
ability at the base of the Neoaves, as noted in Braun et al.

Figure 5. Running time comparison of QFM and QFM-F (c ¼ 70%).
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(2019), is consistent with the complexity of the group and the
difficulties in accurately reconstructing its phylogeny. This
variability may be due in part to the types of data used in the
analyses, as different data types can provide conflicting sig-
nals and make it difficult to accurately resolve relationships
(Reddy et al. 2017, Braun and Kimball 2021). It is also possi-
ble that the variability reflects simultaneous speciation events,
as proposed by Suh (2016). It is important to consider these
issues when interpreting the results of phylogenetic analyses
of the Neoaves clade and to continue to explore and test dif-
ferent approaches to improve our understanding of the evolu-
tionary relationships within this group. It is also important to
note that the differences among trees at the base do not neces-
sarily indicate a problem with the quartet assembly method
used, but rather reflect the inherent complexity of the problem
and the challenges in accurately reconstructing the phylogeny
of Neoaves. The fact that the trees obtained by different meth-
ods are quite different on the avian dataset suggests that em-
pirical phylogeneticists should attempt a variety of quartet
approaches rather than just the widely used ASTRAL method.
For example, If QFM-FI and ASTRAL provide comparable or
identical results, it should increase the trust in the conclusions
(which is the case for plant dataset).

On other biological datasets, the estimated trees of QFM-FI,
ASTRAL, QMC, and wQMC are quite similar and likewise
compatible with the biological concepts. We have also observed
that QFM of Reaz et al. (2014) is not scalable to large biological
datasets, such as plant and avian dataset. QMC also failed to es-
timate phylogenetic tree on avian dataset whereas other state-of-
the-art methods as well as QFM-FI could.

While an existing tool, PAUP*, does have a fast implemen-
tation of QFM, which can be used by biologists, the inner
workings of that implementation is not available in published
literature. Our work, on the other hand, clearly describes the
changes made to QFM which led to the improved running
time as well as improved tree quality. We have also shown
that QFM-FI runs faster than QFM-PAUP when the study
contains larger number of taxa (see results for 500 taxa versus
100 taxa in Supplementary Fig. S6). Last but not the least,
PAUP* does not allow for any other methods to generate the
quartets except for SVDQuartets, before phylogeny recon-
struction can proceed with QFM. With QFM-FI, on the other
hand, any tool can be used in the upstream analysis to gener-
ate the set of quartets. This is an important point, especially
because our analysis of plant dataset indicated that quartets
generated from gene trees in the upstream analysis may be
more reliable than ones generated from SVDquartets method.
Therefore, we believe that the results in this article adds con-
siderable contribution in the field of computational
phylogenetics.

Overall, through our work, we have been able to signifi-
cantly improve the scalability of QFM. We have also shown
that the tool is still very much relevant in today’s phylogenetic
data analysis, as it produces trees with comparable quality
with state-of-the-art methods in different simulated as well as
biological datasets.

4 Conclusion

In this article, we have presented an improved and scalable
version of QFM algorithm and have demonstrated that it per-
forms better or comparably over several state-of-the-art algo-
rithms. Our improved version of QFM, named QFM-FI, has

been assessed through an extensive simulation study. We have
then used QFM-FI to analyze several biological datasets.
QFM-FI was able to recover phylogenetic relationships well
in the simulated as well as the biological datasets, while QFM
of Reaz et al. (2014) and SVDquartetsþPAUP* were unable
to do so on several datasets. For datasets with a large set of
quartets, QMC, the widely used quartet-based phylogeny re-
construction method, also failed. We have provided time and
memory complexity analysis of QFM-FI, which should draw
confidence in its scalability. We hope that the results pre-
sented in this study will encourage the biologists to use the
tool in their phylogenomic studies and reach their goals of re-
solving phylogenetic relationships of many species
successfully.

Supplementary data

Supplementary data is available at Bioinformatics online.
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